Les infections en pratique – Partie 2 «prévention et thérapie»

COVID-19, la grippe et les syndromes grippaux

Fortbildung
Édition
2021/01
DOI:
https://doi.org/10.4414/phc-f.2021.10324
Prim Hosp Care Med Int Gen. 2021;21(01):16-20

Affiliations
a Medizinische Universitätsklinik, Infektiologie und Spitalhygiene, Kantonsspital Baselland, Bruderholz, Universität Basel; b Regionalspital Rheinfelden, Chirurgische Klinik, Gesundheitszentrum Fricktal AG; c Pharmaceutical Research Care Group, Universität Basel; d Klinik für Radiologie, Kantonsspital Baselland; e Swiss Tropical and Public Health Institute und Universität Basel; f FMH Allg. Innere Medizin, Bern; g FMH Allg. Innere Medizin, Sierre; h ­Regionalspital Rheinfelden, Medizinische Klinik, Gesundheitszentrum Fricktal AG; i Institute for Public Health and Institute for Public Communication, Università della Svizzera italiana, Lugano; j FMH Allg. Innere Medizin, Au ZH; k Klinik für Innere Medizin, Klinik Arlesheim BL; l Abteilung Pädiatrie, Klinik Arlesheim BL; m Médecine Générale FMH, Centre Médical de Lancy GE, UIGP, Faculté de medicine, Université de Genève; n Löwenpraxis und Klinik St. Anna Luzern, ADR-AC GmbH Bern; o Klinik für Infektiologie und Spitalhygiene, Kantonsspital St. Gallen; p FMH Allgemeine Innere Medizin Bern; q Zentrum für Infektionskrankheiten, Klinik im Park, Zürich; r Medizinische Klinik, Infektiologie und Spitalhygiene, Centre Hospitalier, Bienne; s Universitätsklinik für Infektiologie, Universitätsspital Bern, Universität Bern; t Klinik für Infektiologie und Spitalhygiene, Universitätsspital Zürich, Universität Zürich; u FMH Allg. Innere Medizin, Richterswil; v Klinik für Pädiatrie, Hôpital Fribourgeois, Universität Fribourg

Publié le 06.01.2021

Les mesures de distance et d’hygiène sont efficaces en termes de prévention contre la grippe et la COVID-19. Les patient.e.s COVID-19 hospitalisé.e.s souffrant de pneumonie sont actuellement traité.e.s par la dexaméthasone avec ou sans remdesivir. Les événements thromboemboliques doivent être recherchés et prévenus à bas seuil. Un  vaccin efficace et sûr contre le SRAS-CoV-2 représente un énorme défi.

Série Infectiologie

Dans la pratique, les infections et les défenses immunitaires sont des thèmes centraux. Ils offrent d’ex­cellentes opportunités de ­collaboration interdisciplinaire, de vérification de concepts courants et d’intégration de méthodes des médecines complémentaires. Philip Tarr est interniste et infectiologue à ­l’hôpital cantonal de Bâle-­Campagne, et il mène un programme national de recherche PNR 74 sur le scepticisme vis-à-vis des vaccins. Il attache beaucoup d’importance à une médecine centrée sur les patients ainsi qu’à des ­articles pertinents pour la pratique, que nous allons publier régulièrement dans cette série du Primary and Hospital Care.

Prévention

Selon le Conseil fédéral, des mesures de distance et d’hygiène efficaces, peu limitatives et peu coûteuses doivent permettre de contrôler l’épidémie suisse de COVID-19 (tab. 1) [144]; des mesures drastiques (telles que la nouvelle fermeture d’écoles, de magasins, de restaurants, etc.) ne sont à nouveau prévues qu’en cas d’urgence et à un niveau local [144].
Tableau 1: Mesures de prévention efficaces contre la COVID-19 et la grippe dans les cabinets médicaux et les hôpitaux [154–156].
– Une combinaison de mesures est plus efficace que des mesures individuelles [157–163]
– Une communication cohérente [164]
– Désinfection régulière des mains [165]; tousser et éternuer dans un mouchoir/le coude – après désinfection des mains
– Port de masques chirurgicaux à tous les contacts <1,5 mètres [166]
 • Les patient.e.s portent un masque chirurgical lorsqu’ils quittent la chambre et lorsque le personnel entre dans la chambre
– Créer une distance suffisante avec les patient.e.s [165]
– Isolement des gouttelettes des patient.e.s hospitalisé.e.s
 • Désisolement COVID-19 après >48 heures sans fièvre et avec soulagement des symptômes [154] plus:
  • >10 jours après l’apparition des symptômes (lors du retour à domicile)
  • >14 jours après l’apparition des symptômes (lors du transfert vers une autre unité médical, un EMS, un centre de réadaptation)
  • >21 jours après l’apparition des symptômes (si le patient a été aux soins intensifs – consulter un.e infectiologue en cas d’immunosuppression)
 • Désisolement grippe après cinq jours, si les symptômes s’améliorent (pour l’immunosuppression et les patient.e.s aux soins: consulter un.e infectiologue
– Port d’un masque FFP2 lors d’activités génératrices d’aérosols* [154, 325]
 • Influenza
  • Proposer la vaccination aux employés de manière simple, peu contraignante et gratuite
  • Vaccination des patient.e.s à risque [8]
* Intubation, aspiration en circuit ouvert, bronchoscopie, ventilation non invasive, ventilation invasive par trachéotomie, expectoration induite, ventilation à haute fréquence/High Flow (Optiflow), instauration d’une trachéotomie, endoscopie gastro-intestinale supérieure, y compris CPRE.

Un mode de vie sain peut-il aider à se protéger contre la grippe ou la COVID-19?

Voir notre article dans PHC 11/2019 [145]. Les mesures immunostimulantes et donc éventuellement préventives contre le rhume et la grippe sont une durée de sommeil >7 heures [146], des gargarismes réguliers avec de l’eau [145, 147], la substitution de la vitamine D [148, 149] et la consommation prophylactique d’échinacée [150–153]. Ces mesures pourraient également protéger contre la COVID-19, mais on ne dispose pas encore de données à ce sujet.

Pendant combien de temps les patient.e.s COVID-19 sont-ils contagieux.eses?

Le SRAS-CoV-2 est le plus contagieux au début des symptômes et un ou deux jours avant – après l’apparition des symptômes, le risque d’infection et la charge virale dans le nasopharynx diminuent progressivement [346]. Les virus vivants et contagieux du SRAS-CoV-2 n’ont pas été détectés dans la culture virale après plus de neuf jours après l’apparition des symptômes (dans les cas graves jusqu’au 20e jour au maximum) [27, 117–119], même si l’ARN du virus peut encore être détecté par PCR deux à cinq semaines plus tard. Les virus vivants du SRAS-CoV-2 n’ont pratiquement jamais été détectés dans les urines, les selles ou le sang [118].

Où peut-on attraper la grippe et la COVID-19?

Le plus souvent en contact direct et étroit avec d’autres personnes malades (ménage, loisirs, travail) [38]. Environ 10 à 25% [34, 169–173] et 9 à 13% [78] (apparemment jusqu’à 50% aux États-Unis [347]) des membres d’un même ménage peuvent être infectés par le virus de la grippe ou de la COVID-19. À titre de comparaison: plus de 60 à 80% des membres non vaccinés d’un ménage sont infectés par une personne malade en cas de varicelle et de rougeole [174, 175]. Les travailleurs de la santé ne semblent pas présenter un risque accru de contracter la grippe [176] et en Suisse, ils sont rarement infectés par SRAS-Cov-2; la prévalence des anticorps du SRAS-Cov-2 chez le personnel de santé suisse n’était pas plus élevée que dans la population générale [177].

Comment la grippe et la COVID-19 sont-ils transmis?

Les virus respiratoires sont généralement transmis principalement à l’intérieur et par des gouttelettes [178, 179]. Cela nécessite probablement un temps d’exposition ­minimum d’environ 15 minutes, sauf dans le cas des contacts particulièrement intensifs, par exemple dans des salles fermées et bondées. La musique forte favorise l’approche, la voix haute et donc la transmission du virus.

La grippe et la COVID-19 se transmettent-ils par des virus sur les surfaces?

À peine. Bien que les ARN du SRAS-CoV-2 et de la grippe puissent encore être détectés sur des surfaces après plusieurs jours, il s’agit probablement de virus non infectieux, mais seulement de leur ARN «mort» [180]. Le nombre, la viabilité et donc l’infectiosité des coronavirus et des virus de la grippe sur les surfaces diminuent considérablement en quelques heures en raison de la sécheresse et du rayonnement UV – les virus sur les surfaces ne contribuent probablement que modestement à l’infection d’autres personnes [8].

La grippe et la COVID-19 se transmettent-ils par les mains?

Oui. La transmission peut avoir lieu en contact direct et étroit avec les mains (qui sont contaminées par des sécrétions respiratoires et des virus).

Dois-je utiliser un savon antimicrobien pour me laver les mains?

Non. Dans la vie quotidienne, les savons normaux suffisent – les savons antimicrobiens n’ont pas un effet plus puissant pour réduire le risque d’infections respiratoires, de vomissements, de diarrhées et d’infections cutannées [159, 181, 182].

La grippe et la COVID-19 sont-ils transmis par des aérosols qui flottent dans l’air pendant des heures?

Les aérosols (minuscules particules de moins de 5 μm taille) [183] sont considérés beaucoup moins importants que les gouttelettes en termes de potentiel d’infection [184]. Selon les études [185] et les directives actuelles de l’OMS et de swissnoso, l’aérosolisation et donc la transmission «aérogène» des virus de la grippe n’a pas lieu, et dans le cas des virus du SRAS-CoV-2 seulement exceptionnellement [154, 325] – à savoir lorsque de nombreuses personnes se trouvent dans des pièces étroites et mal ventilées, et surtout lorsqu’elles chantent ou crient [186] et dans les hôpitaux lors d’activités génératrices d’aérosols telles que la ventilation non invasive (Tab. 1) [154, 183, 184]. Les résultats experimentaux alarmants doivent être interprétés de manière très critique: Les aérosols produits de l’homme ont une portée limitée et les virus SRAS-CoV-2 qu’ils contiennent ont une durée de vie courte [187].

Quels masques me protègent efficacement contre l’infection par la grippe ou la COVID-19?

La non-infection par COVID-19 de milliers de médecins et d’infirmières suisses en contact direct avec des patient.e.s COVID-19 montre que les masques chirurgicaux offrent une protection efficace [188]. La communication avec les autorités a été adaptée en conséquence [189]. Selon swissnoso, un masque chirurgical est suffisant pour protéger des infections par la grippe et le SRAS-CoV-2 [154]; un masque FFP2 n’est recommandé que pour les activités génératrices d’aérosols [154]. Selon l’OMS [154] et des études d’observation [190–192], les masques FFP2 ne protègent pas plus efficacement que les masques chirurgicaux contre l’infection par la grippe, le SRAS ou la COVID-19. Une nouvelle méta-analyse confirme le bon effet protecteur des masques chirurgicaux [196]. D’ailleurs, dans plus de 80 à 90% des cas, le personnel hospitalier n’attrape la grippe pas au travail mais pendant son temps libre [38, 81, 193–195]. Cela pourrait être la raison de l’efficacité similaire des masques chirurgicaux et FFP2 dans deux études randomisées parmi le personnel de santé ambulatoire [190, 191]. Comme les masques chirurgicaux ne sont pas étanches à 100%, ils permettent – selon une nouvelle hypothèse importante – le passage d’un petit nombre des virus du SRAS-CoV-2, ce qui favorise l’immunité contre le SRAS-CoV-2, mais ne suffit pas à infecter les porteurs de masque [326].

Le «grand public» doit-il porter des masques chirurgicaux?

Le port d’un masque chirurgical aux contacts <1,5 m, en particulier à l’intérieur, est une contribution importante au contrôle d’une pandémie de COVID-19 ou de grippe [160, 164]. Nous devrions appliquer le principe de précaution et porter des masques en lieu d’attendre les résultats des études randomisées [160, 182, 197–201]. Dans certains pays d’Asie orientale, les masques font partie de la vie quotidienne depuis de nombreuses années, et le nombre de cas COVID-19 est beaucoup plus bas qu’en Suisse [93]. Les masques en tissu [204] sont clairement moins efficaces que les masques chirurgicaux [205]; les travailleurs de la santé ne doivent pas les utiliser pour des raisons de sécurité [206].

Comment pouvons-nous prévenir la transmission du COVID-19 et de la grippe sans vaccination obligatoire au cabinet medical et à l’hôpital?

Le port du masque chirurgical dans tous les contacts entre le personnel et les patient.e.s a été introduit dans tous les hôpitaux suisses – la plupart du temps sans discussion et sans stigmatisation inutile [207]!

Traitement de la grippe

Un bon soulagement des symptômes (grâce aux produits naturels, aux plantes, et la médecine complémentaire [208], éventuellement l’utilisation de para­cétamol ou d’AINS), le repos et un apport hydrique adéquat sont les points clés d’un bon traitement de la grippe. Ces mesures augmentent également le bien-être grâce à une attention bienveillante. La fièvre ne doit être réduite que modérément et si l’état général est altéré, car la fièvre joue un rôle important dans la défense contre les infections. Une thérapie antivirale à l’oseltamivir est également disponible en cas de grippe. Au cours des dix dernières années, de nombreux rapports critiques sur l’oseltamivir ont été publiés, avec des références aux publications sélectives des études ayant des résultats favorables et sans preuve que l’oseltamivir réduit la mortalité chez des adultes en bonne santé habituelle [209–213, 214, 215].

Chez quels patient.e.s l’oseltamivir est-il indiqué?

Chez les patient.e.s hospitalisé.e.s et les patient.e.s à risque (tab. 2). Chez ces patient.e.s, l’oseltamivir réduit la durée des symptômes, l’utilisation d’antibiotiques et le taux d’hospitalisation [216]. Les patient.e.s en bonne santé qui peuvent être traités en ambulatoire n’ont pas besoin d’oseltamivir. On s’attend à ce qu’ils présentent une évolution bénigne et un taux de complications très faible; la durée des symptômes et l’excrétion virale ne sont que très peu réduites avec l’oseltamivir [168].
Tableau 2: Oseltamivir: les faits les plus importants en bref.
Propriétés
– Inhibiteur de la neuraminidase
– Disponible en capsules de 30, 45 et 75 mg et en poudre pour la préparation d’une suspension
– Début de la thérapie: dès que possible après l’apparition des symptômes (idéalement dans les 48 heures) [5]
Dosage
– Patient.e.s à partir de 13 ans: 75 mg 2×/j pendant 5 jours (immunosuppression: éventuellement plus longtemps)
– Il n’est plus recommandé de doubler la dose au début de la thérapie ou chez les patient.e.s obèses [222, 223]
– Dosage en cas de l’insuffisance rénale:
 • eGFR 30-60 mL/min: 30 mg 2×/j pendant 5 jours
 • eGFR 10-30 mL/min: Dosage 30 mg 1×/j pendant 5 jours
Indication
– Patient.e.s hospitalisé.e.s et patient.e.s à risque ambulatoires atteint.e.s de grippe A et B
– Aucune efficacité connue contre d’autres virus
– La résistance n’est connue que dans des cas exceptionnels
Effet
– Réduit la durée des symptômes chez:
 • les jeunes personnes en bonne santé d’environ un jour [216, 219]
 • les personnes âgées et polymorbides d’environ 2 à 3 jours [219]
 • Chez les enfants: durée plus courte des symptômes [224]; risque plus faible d’otite moyenne aiguë, surtout à l’âge de 1 à 5 ans [76, 225]
Effets indésirables
– Nausées et vomissements: environ 10% des patient.e.s [216, 225]
– Rarement: effets secondaires neuropsychiatriques (somnolence, altération de la conscience et confusion); comportement anormal [226], surtout chez les jeunes hommes [226–228]

Quelle est l’efficacité de l’oseltamivir si je ne commence à le prendre que 72 à 96 heures après l’apparition des symptômes?

Au point de l’apparition des symptômes, la charge virale est la plus élevée et donc l’oseltamivir a la plus grande efficacité [5]. Si le traitement est commencé dans les cinq premiers jours, l’hospitalisation, les cas graves et les décès peuvent être réduits [216, 168, 217, 218]. Il existe donc des données qui justifient l’utilisation de l’oseltamivir >48 heures après l’apparition des symptômes [219] ou le plus tôt possible après l’hospitalisation [220, 221] chez les patient.e.s à risque et les personnes gravement malades.

Quelle est l’efficacité des produits immunostimulants comme l’échinacée?

Echinacea purpurea a une activité immunomodulatrice et peut-être aussi une activité antivirale directe contre les virus de la grippe in vitro [231, 232]. Dans une étude randomisée avec 473 patient.e.s, l’échinacée s’est révélée aussi efficace que l’oseltamivir, que le patient soit atteint de grippe ou d’un syndrôme grippal (ILI): 90% contre 85% de patient.e.s ne présentaient plus de symptômes avec l’échinacée contre l’oseltamivir au dixième jour et les effets indésirables étant légèrement moindres [225, 232].

L’oseltamivir est-il aussi efficace contre les ILI?

Un effet antiviral de l’oseltamivir contre les virus non-influenza n’est pas connu [216]. Cependant, dans une étude randomisée, les patient.e.s atteint.e.s des ILI sans influenza documenté présentaient également une durée de symptômes plus courte sous l’oseltamivir [219]. Il s’agit probablement d’un effet immunomodulateur favorable [219].

Le favipiravir est-il un médicament prometteur?

Les premiers résultats d’une étude indiquent une récupération et une chute plus rapide de l’ARN de la grippe lorsque l’oseltamivir est administré en association avec le favipiravir [233], un médicament antiviral efficace contre les virus ARN tels que la grippe et le virus ebola.

Traitement de la COVID-19

La COVID-19 est une nouvelle maladie dont les données sur les options thérapeutiques recommandées évoluent rapidement [234]. Jusqu’à présent, aucune thérapie COVID-19 hautement efficace n’a été documentée (tab. 3). En Suisse, actuellement, une thérapie antivirale précoce avec le remdesivir et une immunomodulation/-suppression avec la dexaméthasone sont utilisées pour les patient.e.s hospitalisé.e.s nécessitant une oxygénothérapie.

Vaccination contre la COVID-19

Moins d’un an après le début de la pandémie, les chercheurs ont déjà dévelopé 3 vaccins. Lors des études randomisées avec plus de 30 000 personnes chacun, les vaccins à base d’ARNm se sont révélés très efficaces et – 2 mois après la deuxième dose de vaccin – aucun effet secondaire grave n’est apparu. Selon l’OFSP, il faudra au moins jusqu’au printemps 2021 avant que la vaccination puisse être proposée à la population générale (tab. 3).
Tableau 3: Situation actuelle (1/11/2020) des options thérapeutiques en cas de COVID-19.
1) Thérapie antivirale
Remdesivir
– Deux études contrôlées et randomisées montrent une efficacité modeste:
 • Réduction de la durée des symptômes si la thérapie est commencée dans les 10 jours de l’apparition des symptômes [240]
 • Réduction de la durée des symptômes (de 15 à 10 jours en moyenne) uniquement chez les patient.e.s hospitalisé.e.s sous oxygénothérapie, sans effet sur la mortalité; [241, 327]; inefficace dans les unités de soins intensifs (ventilation mécanique)
 • Inefficace dans l’étude randomisée Solidarity de l’OMS [328]
• Suisse: thérapie de cinq jours pour les patient.e.s hospitalisé.e.s dans l’unité ­normale avec besoin en oxygène
– Disponibilité limitée; commander via l’OFSP [329]
2) Thérapie immunomodulatrice
Corticostéroïdes
– La dexaméthasone (6 mg PO/IV par jour pendant 10 jours) a réduit la mortalité de 20% dans une grande étude randomisée britannique (6425 patient.e.s hospitalisé.e.s)
 • La mortalité dans cette étude était généralement >trois fois plus élevée qu’en Suisse [248]
 • Dans d’autres études, l’efficacité de la dexaméthasone était moins prononcée [330–335]
– Indication de la dexaméthasone en Suisse: patient.e.s hospitalisé.e.s sous oxygénothérapie, y compris en unité de soins intensifs
 • Relativement contre-indiqué chez les patient.e.s légèrement malades (sans oxygène ou en ambulatoire) [249]; la dexaméthasone peut augmenter la mortalité [248]
Autres thérapies immunomodulatrices:
– Tocilizumab: efficacité modeste, pas d’effet sur la mortalité [336]
– À la mi-octobre 2020, le NIH américain a lancé la grande étude randomisée de phase III ACTIV dans laquelle l’infliximab, l’abatacept et le cénicriviroc sont testés [337]
– Hydroxychloroquine: inefficace, non recommandée, même en combinasion avec l’azithromycine [338]
3) Infusion de plasma de convalescence (plasma provenant des convalescent.e.s de COVID-19)
– Pas encore d’études contrôlées [267], efficacité possible [239, 268, 269]
4) Prophylaxie de la thromboembolie veineuse / anticoagulation (un article sur ce sujet sera publié dans un futur numéro de PHC en 2021)
– Les événements thromboemboliques pourraient être plus fréquents dans les cas COVID-19 [102, 103, 270–273], les données ne sont pas uniformes [104, 274]
– L’anticoagulation thérapeutique de tous les patient.e.s COVID-19 n’est pas recommandée, en particulier pas pour les patient.e.s ambulatoires
– À l’hôpital: prophylaxie standard de la thrombose [275–277]; éventuellement prophylaxie intensifiée avec de l’héparine de bas poids moléculaire dans des situations particulières (par exemple, déxamethasone, soins intensifs, D-dimères >3 ug/ml) [278, 279]
5) Vaccination contre la COVID-19 [280, 281, 339]
– Les défis sont énormes:
 • Jamais auparavant une vaccination contre un coronavirus n’avait été développée avec succès
 • Jamais auparavant une vaccination sûre et efficace basée sur la technologie de l’ARNm n’avait été développée avec succès
 • Jamais auparavant une vaccination sûre et efficace n’avait été mise sur le marché dans un délai d’un à trois ans après le début de la recherche/le développement
– La politisation de la vaccination est déjà en cours [282]
– Une communication transparente, culturellement appropriée et linguistiquement compétente sur l’efficacité et la sécurité favorisera la confiance dans la vaccination COVID-19 [283, 340, 341]
– Une obligation de vaccination est en cours de discussion aux Etats-Unis et ailleurs [284, 285, 287], mais est hors de question en Suisse selon l’OFSP [284, 286]

Note


La partie 1 de cet article a été publiée dans le PHC 12 du 2/12/2020:
OH: emploi à temps partiel chez ADR-AC GmbH à Berne, qui effectue des tests immunologiques pour le SARS-CoV-2 et autres. Tous les autres auteurs: pas de conflits d’intérêts.
Prof. Dr. med. Philip Tarr
Medizinische ­Universitätsklinik, ­Kantonsspital Baselland
CH-4101 Bruderholz
philip.tarr[at]unibas.ch
 1 Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020: eabb5793.
 2 Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Engl J Med 2020: NEJMcp2009249.
 3 Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med 2020: NEJMcp2009575.
 4 Paules C, Subbarao K. Influenza. Lancet 2017;390:697–708.
 5 Labella AM, Merel SE. Influenza. Med Clin North Am. 2013;97:­621–45–x.
 6 Ghebrehewet S, MacPherson P, Ho A. Influenza. BMJ. 2016;355:i6258.
 7 Gonçalves AR, Kaiser L. Was steckt hinter der Grippe? Swiss ­Medical Forum. 2019 19:181–6.
 8 Bundesamt für Gesundheit. FAQ Saisonale Grippe (Influenza). 2018; published online Oct 24. https://www.bag.admin.ch/dam/bag/de/dokumente/mt/infektionskrankheiten/grippe/faq-saisonale-grippe.pdf. download.pdf/faq-saisonale-grippe-de.pdf (accessed June 8, 2020).
 9 Gschwend E, Trageser J, Stokar INFRAS von T. Erfassung der Datenlage zur Abschätzung der Krankheitslast der saisonalen Grippe in der Schweiz, Bundesamt für Gesundheit BAG, Abteilung übertragbare Krankheiten. 2018; published online Dec 10. https://www.bag.admin.ch/dam/bag/de/dokumente/mt/i-und-i/grips/executive-summary-erfassung-datenlage-saisonale-grippe.pdf.download.pdf/executive-suummary-erfassung-datenlage-­saisonale-grippe-de.pdf (accessed June 9, 2020).
10 Brunner I, Schmedders K, Wolfensberger A, Schreiber PW, Kuster SP. The economic and public health impact of influenza vaccinations: contributions of Swiss pharmacies in the 2016/17 and 2017/18 influenza seasons and implications for vaccination policy. Swiss Med Wkly. 2019;149:w20161.
11 Bundesamt für Gesundheit. Bericht zur Grippesaison 2018/19. BAG Bulletin 29 2019: 9–21. https://www.infovac.ch/docs/public/influenza/bericht-zur-grippesaison-2018-19-.pdf
12 Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48:2940–7.
13 Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med 2020; 368: m1202–4.
14 Hopkins C, Surda P, Kumar N. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology 2020; published online April 11. DOI:10.4193/Rhin20.116.
15 Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology 2020; published online April 2. DOI:10.4193/Rhin20.114.
16 Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020;xiv:26.
17 Brämerson A, Johansson L, Ek L, Nordin S, Bende M. Prevalence of olfactory dysfunction: the skövde population-based study. Laryngoscope. 2004;114:733–7.
18 Tostmann A, Bradley J, Bousema T, et al. Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Euro Surveill. 2020;25:267.
19 Souty C, Masse S, Valette M, et al. Baseline characteristics and clinical symptoms related to respiratory viruses identified among patients presenting with influenza-like illness in primary care. Clin Microbiol Infect. 2019;25:1147–53.
20 Monto AS, DeJonge P, Callear AP, et al. Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan. J Infect Dis 2020; published online April 4. DOI:10.1093/infdis/jiaa161.
21 Heikkinen T, Järvinen A. The common cold. The Lancet. 2003;361:51–9.
22 Minodier L, Charrel RN, Ceccaldi P-E, et al. Prevalence of gastrointestinal symptoms in patients with influenza, clinical significance, and pathophysiology of human influenza viruses in faecal samples: what do we know? Virol J. 2015;12:215–9.
23 Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985.
24 Carrat F, Vergu E, Ferguson NM, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. American Journal of Epidemiology. 2008;167:775–85.
25 Hayward AC, Fragaszy EB, Bermingham A, et al. Comparative community burden and severity of seasonal and pandemic influenza: results of the Flu Watch cohort study. Lancet Respir Med. 2014;2:445–54.
26 Mohammad S, Korn K, Schellhaas B, Neurath MF, Goertz RS. Clinical Characteristics of Influenza in Season 2017/2018 in a German Emergency Department: A Retrospective Analysis. Microbiol Insights. 2019;12:1178636119890302.
27 Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med. 2020;382:2081–90.
28 Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. N Engl J Med. 2020;382:2158–60.
29 Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ. 2020;369:m1375.
30 Low N. Rapid Response: Re: Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ 2020; published online April 3.
31 O’Reilly F, Dolan GP, Nguyen-Van-Tam J, Noone P. Practical prevention of nosocomial influenza transmission, ‘a hierarchical control’ issue. Occup Med (Lond). 2015;65:696–700.
32 Patrozou E, Mermel LA. Does influenza transmission occur from asymptomatic infection or prior to symptom onset? Public Health Rep. 2009;124:193–6.
33 Ip DKM, Lau LLH, Leung NHL, et al. Viral Shedding and Transmission Potential of Asymptomatic and Paucisymptomatic Influenza Virus Infections in the Community. Clin Infect Dis. 2017;64:736–42.
34 Lau LLH, Nishiura H, Kelly H, Ip DKM, Leung GM, Cowling BJ. Household transmission of 2009 pandemic influenza A (H1N1): a systematic review and meta-analysis. Epidemiology. 2012;23:­­531–42.
35 Bridges CB, Kuehnert MJ, Hall CB. Transmission of influenza: implications for control in health care settings. Clin Infect Dis 2003; 37: 1094–101.
36 Zimmerman RK. Ethical analyses of institutional measures to increase health care worker influenza vaccination rates. Vaccine. 2013;31:6172–6.
37 Jhung MA, D’Mello T, Pérez A, et al. Hospital-onset influenza hospitalizations – United States, 2010-2011. Am J Infect Control 2014;42:7–11.
38 Buckrell S, Coleman BL, McNeil SA, et al. Sources of viral respiratory infections in Canadian acute care hospital healthcare personnel. J Hosp Infect. 2020;104:513–21.
39 Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19). 2020; published online Jan. https://www.ncbi.nlm.nih.gov/books/NBK554776/
40 Wu JT, Leung K, Bushman M, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020;26:506–10.
41 He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 2020; 26: 672–5.
42 Zhu L, Wang J, Huang R, et al. Clinical characteristics of a case series of children with coronavirus disease 2019. Pediatr Pulmonol. 2020;55:1430–2.
43 Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382:1177–9.
44 Yu P, Zhu J, Zhang Z, Han Y, Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis. 2020;395:497.
45 Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. (2020) Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med 17(9): e1003346. https://doi.org/10.1371/journal.pmed.1003346
46 Oh YN, Kim S, Choi YB, Woo SI, Hahn Y-S, Lee JK. Clinical similarities between influenza A and B in children: a single-center study, 2017/18 season, Korea. BMC Pediatr 2019; 19: 472–8.
47 Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS ONE 2015;10:e0118369.
48 Zhou H, Thompson WW, Viboud CG, et al. Hospitalizations associated with influenza and respiratory syncytial virus in the United States, 1993-2008. Clin Infect Dis 2012;54:1427–36.
49 Nicholson KG, Wood JM, Zambon M. Influenza. Lancet. 2003;362:1733–45.
50 Walker TA, Waite B, Thompson MG, et al. Risk of Severe Influenza Among Adults With Chronic Medical Conditions. J Infect Dis. 2020;221:183–90.
51 Schanzer DL, Langley JM, Tam TWS. Co-morbidities associated with influenza-attributed mortality, 1994–2000, Canada. Vaccine. 2008;26:4697–703.
52 Warren-Gash C, Smeeth L, Hayward AC. Influenza as a trigger for acute myocardial infarction or death from cardiovascular disease: a systematic review. The Lancet Infectious Diseases. 2009;9:601–10.
53 Bundesamt für Gesundheit. Situationsbericht zur epidemiologischen Lage in der Schweiz und im Fürstentum Liechtenstein. 2020; https://www.bag.admin.ch/bag/de/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/situation-schweiz-und-international.html#1981486371
54 Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395:809–15.
55 Qiao J. What are the risks of COVID-19 infection in pregnant women? Lancet. 2020;395:760–2.
56 Zeng H, Xu C, Fan J, et al. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA. 2020;323:1848–9.
57 Rauh AL, Linder JA. Covid-19 care before, during, and beyond the hospital. BMJ. 2020;369:m2035.
58 Schweizerischen Gesellschaft für Pneumologie. Erläuterung und Stellungsnahme der Schweizerischen Gesellschaft für Pneumologie betreffend dem Verständnis Chronischer Lungenkrankheiten als Risiko für einen schwerwiegenden Verlauf bei Infektion mit SARS CoViD19. 2020; published online March 17. http://www.pneumo.ch/files/pneumo/pdf/news/2020/Empfehlungen%20und%20Stellungnahme%20der%20SGP%20DE_27420.pdf (accessed May 17, 2020).
59 Schweizerischen Hypertonie-Gesellschaft. Stelllungsnahme der Schweizerischen Hypertonie Gesellschaft (SHG) zur arteriellen Hypertonie und der COVID-19 Infektion. 2020; published online March 19. http://www.swisshypertension.ch/DOCS_PUBLIC/Stellungnahme_COVID_19_D.pdf (accessed May 17, 2020).
60 Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med 2020; NEJMoa2006923.
61 Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. N Engl J Med 2020; NEJMoa2008975.
62 Jarcho JA, Ingelfinger JR, Hamel MB, D’Agostino RB, Harrington DP. Inhibitors of the Renin-Angiotensin-Aldosterone System and Covid-19. N Engl J Med. 2020; NEJMe2012924.
63 Schweizerische Gesellschaft für Endokrinologie und Diabetologie. Informationen zu COVID-19 Informationen betreffend COVID-19 und Adipositas. 2020; published online April 20. https://www.sgedssed.ch/diabetologie/covid-19
64 Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020; published online April 9. DOI:10.1002/oby.22831.
65 Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis. 2020;3:29.
66 Rasmussen SA, Jamieson DJ, Bresee JS. Pandemic influenza and pregnant women. Emerging Infect Dis. 2008;14:95–100.
67 Swamy GK, Heine RP. Vaccinations for pregnant women. Obstetrics & Gynecology. 2015;125:212–26.
68 Omer SB. Maternal Immunization. N Engl J Med. 2017;376:1256–67.
69 Fell DB, Platt RW, Lanes A, et al. Fetal death and preterm birth associated with maternal influenza vaccination: systematic review. BJOG. 2015;122:17–26.
70 Fox JP, Hall CE, Cooney MK, Foy HM. Influenzavirus infections in Seattle families, 1975–1979. I. Study design, methods and the occurrence of infections by time and age. Am J Epidemiol. 1982;116:212–27.
71 Glezen WP, Keitel WA, Taber LH, Piedra PA, Clover RD, Couch RB. Age distribution of patients with medically-attended illnesses caused by sequential variants of influenza A/H1N1: comparison to age-specific infection rates, 1978–1989. Am J Epidemiol. 1991;133:296–304.
72 JORDAN WS, DENNY FW, BADGER GF, et al. A study of illness in a group of Cleveland families. XVII. The occurrence of Asian influenza. Am J Hyg. 1958;68:190–212.
73 Heikkinen T, Silvennoinen H, Peltola V, et al. Burden of influenza in children in the community. J Infect Dis. 2004;190:1369–73.
74 Hsiao A, Buck PO, Yee A, et al. Retrospective study of the use of an influenza disease two-tiered classification system to characterize clinical severity in US children. Hum Vaccin Immunother. 2020;58:1–9.
75 Heikkinen T, Silvennoinen H, Heinonen S, Vuorinen T. Clinical and socioeconomic impact of moderate-to-severe versus mild influenza in children. Eur J Clin Microbiol Infect Dis. 2016;35:1107–13.
76 Winther B, Block SL, Reisinger K, Dutkowski R. Impact of oseltamivir treatment on the incidence and course of acute otitis media in children with influenza. Int J Pediatr Otorhinolaryngol. 2010;74:684–8.
77 Parri N, Lenge M, Buonsenso D, Coronavirus Infection in Pediatric Emergency Departments (CONFIDENCE) Research Group. Children with Covid-19 in Pediatric Emergency Departments in Italy. N Engl J Med. 2020; NEJMc2007617.
78 Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. The Lancet Infectious Diseases 2020; published online April 27. DOI:10.1016/S1473-3099(20)30287-5.
79 Whittaker E, Bamford A, Kenny J, et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA 2020; published online June 8. DOI:10.1001/jama.2020.10369.
80 McCrindle BW, Manlhiot C. SARS-CoV-2-Related Inflammatory Multisystem Syndrome in Children: Different or Shared Etiology and Pathophysiology as Kawasaki Disease? JAMA 2020; published online June 8. DOI:10.1001/jama.2020.10370.
81 Williams CJ, Schweiger B, Diner G, et al. Seasonal influenza risk in hospital healthcare workers is more strongly associated with household than occupational exposures: results from a prospective cohort study in Berlin, Germany, 2006/07. BMC Infect Dis. 2010;10:8–11.
82 Viboud C, Boëlle P-Y, Cauchemez S, et al. Risk factors of influenza transmission in households. Br J Gen Pract. 2004;54:684–9.
83 Musher DM. How contagious are common respiratory tract infections? N Engl J Med. 2003;348:1256–66.
84 Zimmermann P, Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. The Pediatric Infectious Disease Journal. 2020;39:355–68.
85 Swiss National COVID-19 Science Task Force. The role of children (0-18 years of age) in the transmission of SARS-CoV-2: rapid review. 2020; published online May 10. https://ncs-tf.ch/de/policy-briefs (accessed June 14, 2020).
86 Bundesamt für Gesundheit. COVID-19 Grundprinzipien Wiederaufnahme des Präsenzunterrichts an obligatorischen Schulen als Grundlage für die Ausarbeitung der Schutzkonzepte der Schulen unter Berücksichtigung der Betreuungseinrichtungen und Musikschulen. 2020; published online May 1. https://www.ag.ch/media/kanton_aargau/themen_1/coronavirus_1/merkblaetter/20200505_Grundprinzipien_Schutzkonzept_obligatorische_Schulen_Betreuungseinrichtungen_Musikschulen.pdf (accessed May 17, 2020).
87 Viner RM, Russell SJ, Croker H, et al. School closure and management practices during coronavirus outbreaks including COVID-19: a rapid systematic review. Lancet Child Adolesc Health. 2020;4:397–404.
88 Mallapaty S. How do children spread the coronavirus? The science still isn’t clear. Nature. 2020;581:127–8.
89 Jones T, Mühlemann B, Veith T. An analysis of SARS-CoV2 viral load by patient age. 2020; published online April 30. https://www.drperlmutter.com/wp-content/uploads/2020/05/analysis-of-SARS-CoV-2-viral-load-by-patient-age.pdf (accessed May 17, 2020).
90 Mandavilli A. New Studies Add to Evidence that Children May Transmit the Coronavirus. The New York Times Company. 2020; published online May 5. https://nyti.ms/2SDdFiM
91 Demicheli V, Jefferson T, Ferroni E, Rivetti A, Di Pietrantonj C. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev 2018; 2: CD001269.
92 Demicheli V, Jefferson T, Di Pietrantonj C, et al. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 2018; 2: CD004876.
93 COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE). John Hopkins. 2020. https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (accessed May 31, 2020).
94 Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020;172:577–82.
95 Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infect Dis. 2020;26:1470–7.
96 Guan W-J, Ni Z-Y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; NEJMoa2002032.
97 Guo T, Fan Y, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; published online March 27. DOI:10.1001/jamacardio.2020.1017.
98 Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically Ill Patients in the Seattle Region – Case Series. N Engl J Med. 2020:NEJMoa2004500.
99 ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. American Medical Association. 2012:2526–33.
100 Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094–9.
101 Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.
102 Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18:1324–9.
103 Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–7.
104 Breakey N, Escher R. D-dimer and mortality in COVID-19: a self-fulfilling prophecy or a pathophysiological clue? Swiss Med Wkly. 2020;150:w20293.
105 Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol 2020; published online April 10. DOI:10.1001/jamaneurol.2020.1127.
106 Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol 2020; published online May 29. DOI:10.1001/jamaneurol.2020.2065.
107 Fauci AS, Lane HC, Redfield RR. Covid-19 – Navigating the Uncharted. N Engl J Med. 2020;382:1268–9.
108 Lindbäck S, Hellgren U, Julander I, Hansson LO. The value of C-reactive protein as a marker of bacterial infection in patients with septicaemia/endocarditis and influenza. Scand J Infect Dis. 1989;21:543–9.
109 Haran JP, Suner S, Gardiner F. Correlation of C-reactive protein to severity of symptoms in acute influenza A infection. J Emerg Trauma Shock. 2012;5:149–52.
110 Vasileva D, Badawi A. C-reactive protein as a biomarker of severe H1N1 influenza. Inflamm Res. 2019;68:39–46.
111 van Vugt SF, Broekhuizen BDL, Lammens C, et al. Use of serum C reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough: diagnostic study. BMJ. 2013;346:f2450–0.
112 Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020; published online April 22. DOI:10.1001/jama.2020.6775.
113 Luo X, Zhou W, Yan X, et al. Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis 2020; published online May 23. DOI:10.1093/cid/ciaa641.
114 Bhargava A, Fukushima EA, Levine M, et al. Predictors for Severe COVID-19 Infection. Clin Infect Dis 2020; published online May 30. DOI:10.1093/cid/ciaa674.
115 Spencer S, Thompson MG, Flannery B, Fry A. Comparison of Respiratory Specimen Collection Methods for Detection of Influenza Virus Infection by Reverse Transcription-PCR: a Literature Review. J Clin Microbiol. 2019;57:560.
116 Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020; published online March 11. DOI:10.1001/jama.2020.3786.
117 Center for Disease Control and Prevention. Symptom-Based Strategy to Discontinue Isolation for Persons with COVID-19. 2020; published online May 3. https://www.cdc.gov/coronavirus/2019-ncov/community/strategy-discontinue-isolation.html (accessed June 14, 2020).
118 Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; published online April 1. DOI:10.1038/s41586-020-2196-x.
119 Bullard J, Dust K, Funk D, et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis 2020; published online May 22. DOI:10.1093/cid/ciaa638.
120 Chertow DS, Memoli MJ. Bacterial coinfection in influenza: a grand rounds review. JAMA. 2013;309:275–82.
121 Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–23.
122 Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis 2020; published online March 12. DOI:10.1093/cid/ciaa247.
123 Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. AJR Am J Roentgenol. 2020; 1–7.
124 Sun Z. Diagnostic Value of Chest CT in Coronavirus Disease 2019 (COVID-19). Curr Med Imaging. 2020;16:274–5.
125 Wang Y, Dong C, Hu Y, et al. Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study. Radiology 2020; 200843.
126 Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020;295:200463.
127 Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology 2020; 200823.
128 Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med. 2014;371:1619–28.
129 Metersky ML, Masterton RG, Lode H, File TM, Babinchak T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int J Infect Dis. 2012;16:e321–31.
130 Lamichhane PP, Samarasinghe AE. The Role of Innate Leukocytes during Influenza Virus Infection. J Immunol Res. 2019; 2019: 8028725–17.
131 Whicher JT, Chambers RE, Higginson J, Nashef L, Higgins PG. Acute phase response of serum amyloid A protein and C reactive protein to the common cold and influenza. J Clin Pathol. 1985;38:312–6.
132 Edelbauer M, Würzner R, Jahn B, Zimmerhackl LB. C-reactive protein and leukocytes do not reliably indicate severity of influenza a infection in childhood. Clin Pediatr (Phila) 2006;45:531–6.
133 Woodhead M, Blasi F, Ewig S, et al. Guidelines for the management of adult lower respiratory tract infections--full version. Clin. Microbiol. Infect. 2011;17(Suppl 6):E1–59.
134 Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection – Challenges and Implications. N Engl J Med. 2020; NEJMp2015897.
135 Weinstein MC, Freedberg KA, Hyle EP, Paltiel AD. Waiting for Certainty on Covid-19 Antibody Tests – At What Cost? N Engl J Med. 2020; NEJMp2017739.
136 Ng K, Faulkner N, Cornish G, et al. Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans. bioRxiv 2020; 2020.05.14.095414.
137 Jacobs JJL. Neutralizing antibodies mediate virus-immune pathology of COVID-19. Med Hypotheses 2020;143:109884.
138 European Network For Helath Technology Assessment, Ballini L, Djuric O, Venturelli F. Rapid collaborative review on the current role of antibodytests for novel coronvirus SARS-COV-2 in the mangement of the pandemic – Project ID: RCR OT 01. 2020; published online June 22. https://www.iqwig.de/download/RCR_OT_01-_Antibody-tests-for-SARS-CoV-2_23-06-2020.pdf (accessed July 5, 2020).
139 Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. 2020; 2: e200110.
140 Ellinghaus D, Degenhardt F, Bujanda L, et al. The ABO blood group locus and a chromosome 3 gene cluster associate with SARS-CoV-2 respiratory failure in an Italian-Spanish genome-wide association analysis. medRxiv 2020: 2020.05.31.20114991.
141 Owen WF, Carmona R, Pomeroy C. Failing Another National Stress Test on Health Disparities. JAMA. 2020;323:1905–6.
142 Yancy CW. COVID-19 and African Americans. JAMA. 2020;323:­1891–2.
143 Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. N Engl J Med 2020: NEJMsa2011686.
144 Swiss National COVID-19 Science Task Force. Strategie, um die SARS-CoV-2-Epidemie zu kontrollieren. 2020; published online May 26. https://ncs-tf.ch/de/policy-briefs?layout=default (accessed June 14, 2020).
145 Germann M, Hilfiker A, Huber BM. Immunstimulation zur Prävention und Therapie von akuten Luftwegsinfektionen. Primary and hospital care; 19: 345–9.
146 Cohen S, Doyle WJ, Alper CM, Janicki-Deverts D, Turner RB. Sleep habits and susceptibility to the common cold. Arch Intern Med. 2009;169:62–7.
147 Satomura K, Kitamura T, Kawamura T, et al. Prevention of upper respiratory tract infections by gargling: a randomized trial. Am J Prev Med. 2005;29:302–7.
148 Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5:986–1004.
149 Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.
150 Karsch-Völk M, Barrett B, Linde K. Echinacea for preventing and treating the common cold. JAMA. 2015;313:618–9.
151 Shah SA, Sander S, White CM, Rinaldi M, Coleman CI. Evaluation of echinacea for the prevention and treatment of the common cold: a meta-analysis. Lancet Infect Dis. 2007;7:473–80.
152 Jawad M, Schoop R, Suter A, Klein P, Eccles R. Safety and Efficacy Profile of Echinacea purpurea to Prevent Common Cold Episodes: A Randomized, Double-Blind, Placebo-Controlled Trial. Evid Based Complement Alternat Med. 2012; 2012: 841315–7.
153 Weber W, Taylor JA, Stoep AV, Weiss NS, Standish LJ, Calabrese C. Echinacea purpurea for prevention of upper respiratory tract infections in children. J Altern Complement Med. 2005;11:1021–6.
154 Swissnoso. Interims Vorsorgemassnahmen in Spitälern für einen hospitalisierten Patienten mit begründetem Verdacht oder mit einer bestätigten COVID-19 Infektion. 2020; published online May 5. https://www.swissnoso.ch/fileadmin/swissnoso/Dokumente/5_Forschung_und_Entwicklung/6_Aktuelle_Erreignisse/200505_Vorsorgemassnahmen_COVID-19_Spital_V7.2_DE.pdf (accessed May 21, 2020).
155 Cheng VCC, Tai JWM, Wong LMW, et al. Prevention of nosocomial transmission of swine-origin pandemic influenza virus A/H1N1 by infection control bundle. J Hosp Infect. 2010;74:271–7.
156 Blanco N, Eisenberg MC, Stillwell T, Foxman B. What Transmission Precautions Best Control Influenza Spread in a Hospital? Am J Epidemiol. 2016;183:1045–54.
157 Grayson ML, Melvani S, Druce J, et al. Efficacy of soap and water and alcohol-based hand-rub preparations against live H1N1 influenza virus on the hands of human volunteers. Clin Infect Dis. 2009;48:285–91.
158 Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health 2020; published online June 2. DOI:10.1016/S2468-2667(20)30133-X.
159 Aiello AE, Coulborn RM, Perez V, Larson EL. Effect of hand hygiene on infectious disease risk in the community setting: a meta-analysis. Am J Public Health. 2008;98:1372–81.
160 Cowling BJ, Zhou Y, Ip DKM, Leung GM, Aiello AE. Face masks to prevent transmission of influenza virus: a systematic review. Epidemiol Infect. 2010;138:449–56.
161 Aiello AE, Perez V, Coulborn RM, Davis BM, Uddin M, Monto AS. Facemasks, hand hygiene, and influenza among young adults: a randomized intervention trial. PLoS ONE 2012;7:e29744.
162 Ferguson N, Laydon D, Nedjati-Gilani G. Imperial College COVID-19 Response Team. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. 2020; published online March 16. https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-03-16-COVID19-Report-9.pdf (accessed June 14, 2020).
163 Koo JR, Cook AR, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. The Lancet Infectious Diseases 2020; published online March 23. DOI:10.1016/S1473-3099(20)30162-6.
164 Swiss National COVID-19 Science Task Force. Role of Face masks as part of non-pharmaceutical interventions against coronavirus disease. 2020; published online April 20. https://ncs-tf.ch/de/policy-briefs?layout=default (accessed June 14, 2020).
165 Verbindung der Schweizer Ärztinnen und Ärzte. COVID-19: Schutzkonzept der FMH zum Betrieb von Arztpraxen. FMH. 2020; published online April 22. https://www.sgaim.ch/fileadmin/user_upload/BilderHighres/Seiteninhalte/200423_COVID-19_Schutzkonzept_FMH.pdf (accessed May 18, 2020).
166 Offeddu V, Yung CF, Low MSF, Tam CC. Effectiveness of Masks and Respirators Against Respiratory Infections in Healthcare Workers: A Systematic Review and Meta-Analysis. Clin Infect Dis. 2017;65:1934–42.
167 Chan AT, Brownstein JS. Putting the Public Back in Public Health – Surveying Symptoms of Covid-19. N Engl J Med. 2020; ­NEJMp2016259.
168 Fry AM, Goswami D, Nahar K, et al. Efficacy of oseltamivir treatment started within 5 days of symptom onset to reduce influenza illness duration and virus shedding in an urban setting in Bangladesh: a randomised placebo-controlled trial. Lancet Infect Dis. 2014;14:109–18.
169 Tsang TK, Lau LLH, Cauchemez S, Cowling BJ. Household Transmission of Influenza Virus. Trends Microbiol. 2016;24:123–33.
170 Tsang TK, Cowling BJ, Fang VJ, Chan K-H. Influenza A Virus Shedding and Infectivity in Households. J Infect Dis. 2015;212:1420–8.
171 Papenburg J, Baz M, Hamelin M-È, et al. Household transmission of the 2009 pandemic A/H1N1 influenza virus: elevated laboratory-confirmed secondary attack rates and evidence of asymptomatic infections. Clin Infect Dis. 2010;51:1033–41.
172 Cheung DH, Tsang TK, Fang VJ, et al. Association of Oseltamivir Treatment With Virus Shedding, Illness, and Household Transmission of Influenza Viruses. J Infect Dis. 2015;212:391–6.
173 Jackson ML, France AM, Hancock K, et al. Serologically confirmed household transmission of 2009 pandemic influenza A (H1N1) virus during the first pandemic wave-New York City, April-May 2009. Clin Infect Dis. 2011;53:455–62.
174 Heininger U, Seward JF. Varicella. Lancet. 2006;368:1365–76.
175 Tarr PE, Gallmann C, Heininger U. Masern in der Schweiz. Erkennung und Impfberatung. Schweiz Med Forum; 8: 868–72.
176 Kuster SP, Shah PS, Coleman BL, et al. Incidence of influenza in healthy adults and healthcare workers: a systematic review and meta-analysis. PLoS ONE 2011;6:e26239.
177 Balmer D. Corona in den Krankenhäusern – 2100 Covid-Fälle beim Spitalpersonal. Tages-Anzeiger. 2020; published online May 31.
178 Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. Transmission of influenza A in human beings. Lancet Infect Dis. 2007;7:257–65.
179 Leekha S, Zitterkopf NL, Espy MJ, Smith TF, Thompson RL, Sampathkumar P. Duration of influenza A virus shedding in hospitalized patients and implications for infection control. Infect Control Hosp Epidemiol. 2007;28:1071–6.
180 van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382:1564–7.
181 Larson EL, Lin SX, Gomez-Pichardo C, Della-Latta P. Effect of antibacterial home cleaning and handwashing products on infectious disease symptoms: a randomized, double-blind trial. Ann Intern Med. 2004;140:321–9.
182 Jefferson T, Del Mar CB, Dooley L, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev 2011; 141: CD006207.
183 Sax H, Droz M, Pittet D. Spitalhygiene in Langzeitpflegeeinrichtungen. Swiss-NOSO. https://www.swissnoso.ch/fileadmin/swissnoso/Dokumente/6_Publikationen/Bulletin_Artikel_D/v6_4_1999-12_Swissnoso_Bulletin_de.pdf (accessed May 3, 2020).
184 Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci USA 2020;12:202006874.
185 Tang JW, Gao CX, Cowling BJ, et al. Absence of detectable influenza RNA transmitted via aerosol during various human respiratory activities-experiments from Singapore and Hong Kong. PLoS ONE 2014;9:e107338.
186 Kübler S. Wenig schreien, nicht küssen. Tages-Anzeiger. 2020; published online May 23.
187 Rubens JH, Karakousis PC, Jain SK. Stability and Viability of SARS-CoV-2. N Engl J Med. 2020;382:1962–3.
188 Ng K, Poon BH, Kiat Puar TH, et al. COVID-19 and the Risk to Health Care Workers: A Case Report. Ann Intern Med. 2020; L20–0175.
189 Bundesamt für Gesundheit. Neues Coronavirus: Schutzmassnahmen für Gesundheitsfachpersonen und besonders gefährdete Personen. 2020; published online April 22. https://nvs.swiss/Dokumente/Rubrik-Aktuell/2020/Corona-Virus/Schutzmassnahmen-BAG.pdf (accessed June 14, 2020).
190 Loeb M, Dafoe N, Mahony J, et al. Surgical mask vs N95 respirator for preventing influenza among health care workers: a randomized trial. JAMA. 2009;302:1865–71.
191 Radonovich LJ, Simberkoff MS, Bessesen MT, et al. N95 Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel: A Randomized Clinical Trial. JAMA. 2019;322:824–33.
192 Johnson DF, Druce JD, Birch C, Grayson ML. A quantitative assessment of the efficacy of surgical and N95 masks to filter influenza virus in patients with acute influenza infection. Clin Infect Dis. 2009;49:275–7.
193 Seto W-H, Cowling BJ, Lam H-S, Ching PTY, To M-L, Pittet D. Clinical and nonclinical health care workers faced a similar risk of acquiring 2009 pandemic H1N1 infection. Clin Infect Dis. 2011;53:280–3.
194 Stupica D, Lusa L, Petrovec M, et al. Respiratory viruses in patients and employees in an intensive care unit. Infection. 2012;40:381–8.
195 Kuster SP, Coleman BL, Raboud J, et al. Risk factors for influenza among health care workers during 2009 pandemic, Toronto, Ontario, Canada. Emerging Infect Dis. 2013;19:606–15.
196 Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020; published online June 1. DOI:10.1016/S0140-6736(20)31142-9.
197 Brönnimann C. Diese Dokumente zeigen, wie der Bund die Pandemie unterschätzt hat. Sonntagszeitung Tagesanzeiger. 2020; published online June 13.
198 Greenhalgh T, Schmid MB, Czypionka T, Bassler D, Gruer L. Face masks for the public during the covid-19 crisis. BMJ. 2020;369:m1435.
199 Leung NHL, Chu DKW, Shiu EYC, et al. Author Correction: Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020:1–1.
200 Howard RA, Lathrop GW, Powell N. Sterile field contamination from powered air-purifying respirators (PAPRs) versus contamination from surgical masks. Am J Infect Control. 2020;48:153–6.
201 Cheng VC-C, Wong S-C, Chuang VW-M, et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. J Infect 2020; published online April 23. DOI:10.1016/j.jinf.2020.04.024.
202 Bundesamt für Gesundheit. COVID-19-Epidemie, Empfehlungen zur Anwendung von Schutzmaterial. 2020; published online March 14. https://www.spitexzh.ch/files/G3AVADM/empfehlungen_anwendung_schutzmaterial_2.pdf (accessed June 14, 2020).
203 Bundesamt für Gesundheit. Tragen von Hygienemasken im öffentlichen Raum. Fragen und Antworten. 2020; published online April 22. https://www.newsd.admin.ch/newsd/message/attachments/61029.pdf (accessed May 31, 2020).
204 Coronavirus Disease 2019 (COVID-19). Use of Cloth Face Coverings to Help Slow the Spread of COVID-19 2020; published online June 28. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/diy-cloth-face-coverings.html. (accessed June 30, 2020).
205 MacIntyre CR, Seale H, Dung TC, et al. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open 2015; 5: e006577–7.
206 MacIntyre CR, Seale H, Dung TC, et al. COVID-19, shortages of masks and the use of cloth masks as a last resort. BMJ Open 2020.
207 Duckworth A, Ungar L, Emanuel EJ. There Are 3 Things We Have to Do to Get People Wearing Masks. The New York Times Company. 2020; published online May 27.
208 Zanasi A, Mazzolini M, Tursi F, Morselli-Labate AM, Paccapelo A, Lecchi M. Homeopathic medicine for acute cough in upper respiratory tract infections and acute bronchitis: a randomized, double-blind, placebo-controlled trial. Pulm Pharmacol Ther. 2014;27:102–8.
209 Freemantle N, Shallcross LJ, Kyte D, Rader T, Calvert MJ. Oseltamivir: the real world data. BMJ. 2014 348:g2371–1.
210 Ebell MH. WHO downgrades status of oseltamivir. BMJ. 2017;358:j3266.
211 Jefferson T, Jones M, Doshi P, Spencer EA, Onakpoya I, Heneghan CJ. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2545–5.
212 Cochrane Neuraminidase Inhibitors Review Team. Does oseltamivir really reduce complications of influenza? Clin Infect Dis. 2011;53:1302–3–author reply1303–4.
213 Godlee F. Open letter to Roche about oseltamivir trial data. BMJ. 2012;345:e7305–5.
214 Loder E, Tovey D, Godlee F. The Tamiflu trials. BMJ. 2014;348:g2630–0.
215 Krumholz HM. Neuraminidase inhibitors for influenza. BMJ. 2014;348:g2548.
216 Dobson J, Whitley RJ, Pocock S, Monto AS. Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials. Lancet. 2015;385:1729–37.
217 Muthuri SG, Venkatesan S, Myles PR, et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respir Med. 2014;2:395–404.
218 Louie JK, Yang S, Acosta M, et al. Treatment with neuraminidase inhibitors for critically ill patients with influenza A (H1N1)pdm09. Clin Infect Dis. 2012;55:1198–204.
219 Butler CC, van der Velden AW, Bongard E, et al. Oseltamivir plus usual care versus usual care for influenza-like illness in primary care: an open-label, pragmatic, randomised controlled trial. Lancet. 2020;395:42–52.
220 Katzen J, Kohn R, Houk JL, Ison MG. Early Oseltamivir After Hospital Admission Is Associated With Shortened Hospitalization: A 5-Year Analysis of Oseltamivir Timing and Clinical Outcomes. Clin Infect Dis. 2019;69:52–8.
221 de Jong MD. Facilitating Early Treatment of Influenza in Hospitals: Empiric Antivirals or Empiric Diagnostics? Clin Infect Dis. 2019;69:59–60.
222 Lee N, Hui DSC, Zuo Z, et al. A prospective intervention study on higher-dose oseltamivir treatment in adults hospitalized with influenza a and B infections. Clin Infect Dis. 2013;57:1511–9.
223 South East Asia Infectious Disease Clinical Research Network. Effect of double dose oseltamivir on clinical and virological outcomes in children and adults admitted to hospital with severe influenza: double blind randomised controlled trial. BMJ. 2013;346:f3039–9.
224 Reisinger K, Greene G, Aultman R, Sander B, Gyldmark M. Effect of influenza treatment with oseltamivir on health outcome and costs in otherwise healthy children. Clin Drug Investig. 2004;24:395–407.
225 Malosh RE, Martin ET, Heikkinen T, Brooks WA, Whitley RJ, Monto AS. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta-analysis of Randomized Controlled Trials. Clin Infect Dis. 2018;66:1492–500.
226 Jones M, Tett SE, Del Mar C. Psychiatric adverse events in oseltamivir prophylaxis trials: Novel comparative analysis using data obtained from clinical study reports. Pharmacoepidemiol Drug Saf. 2018;27:1217–22.
227 Toovey S, Rayner C, Prinssen E, et al. Assessment of neuropsychiatric adverse events in influenza patients treated with oseltamivir: a comprehensive review. Drug Saf. 2008;31:1097–114.
228 Ueda N, Umetsu R, Abe J, et al. Analysis of Neuropsychiatric Adverse Events in Patients Treated with Oseltamivir in Spontaneous Adverse Event Reports. Biol Pharm Bull. 2015;38:1638–44.
229 Bassetti M, Castaldo N, Carnelutti A. Neuraminidase inhibitors as a strategy for influenza treatment: pros, cons and future perspectives. Expert Opin Pharmacother. 2019;20:1711–8.
230 Uyeki TM, Bernstein HH, Bradley JS, et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis. 2019;68:e1–e47.
231 Pleschka S, Stein M, Schoop R, Hudson JB. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol J. 2009;6:197–9.
232 Rauš K, Pleschka S, Klein P, Schoop R, Fisher P. Effect of an Echinacea-Based Hot Drink Versus Oseltamivir in Influenza Treatment: A Randomized, Double-Blind, Double-Dummy, Multicenter, Noninferiority Clinical Trial. Curr Ther Res Clin Exp. 2015;77:66–72.
233 Wang Y, Fan G, Salam A, et al. Comparative Effectiveness of Combined Favipiravir and Oseltamivir Therapy Versus Oseltamivir Monotherapy in Critically Ill Patients With Influenza Virus Infection. J Infect Dis. 2020;221:1688–98.
234 McCreary EK, Pogue JM. Coronavirus Disease 2019 Treatment: A Review of Early and Emerging Options. Open Forum Infect Dis. 2020;7:ofaa105.
235 Cohen MS, Corey L. Combination prevention for COVID-19. Science. 2020;368:551–1.
236 Boulware DR, Pullen MF, Bangdiwala AS, et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N Engl J Med 2020; NEJMoa2016638.
237 Guidelines of the Swiss Society for Infectious Diseases. SARS-CoV-2 /COVID-19 – Antiviral and immunomodulatory treatment considerations (continually updated). 2020. https://ssi.guidelines.ch/guideline/3352 (accessed May 18, 2020).
238 Li Z, Wang X, Cao D, Sun R, Li C, Li G. Rapid review for the anti-coronavirus effect of remdesivir. Drug Discov Ther. 2020;14:73–6.
239 Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020; NEJMoa2007016.
240 Wang Y, Zhang D, Du G. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet 2020; published online April 29.
241 Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 – Preliminary Report. N Engl J Med. 2020: NEJMoa2007764.
242 European Medicines Agency. First COVID-19 treatment recommended for EU authorisation. 2020; published online June 25. https://www.ema.europa.eu/en/documents/press-release/first-covid-19-treatment-recommended-eu-authorisation_en.pdf (accessed July 5, 2020).
243 Lawless J, Olsen J, Johnson L. The New York Times – Health Experts Slam US Deal for Large Supply of Virus Drug. 2020; published online July 1. https://www.nytimes.com/aponline/2020/07/01/world/europe/bc-eu-virus-outbreak-us-hoarding.html (accessed July 5, 2020).
244 Coomes EA, Haghbayan H. Favipiravir, an antiviral for COVID-19? J Antimicrob Chemother. 2020;75:2013–4.
245 Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020; NEJMoa2001282.
246 Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8:267–76.
247 Fadel R, Morrison AR, Vahia A, et al. Early Short Course Corticosteroids in Hospitalized Patients with COVID-19. Clin Infect Dis 2020; published online May 19. DOI:10.1093/cid/ciaa601.
248 Horby P, Lim WS, Emberson J, et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv 2020; 2020.06.22.20137273.
249 UK CMOs and Medical Director of NHS England, Atherton F, Smith G, McBride M. Dexamethasone in COVID-19. 2020; published online June 16. https://www.rpharms.com/Portals/0/RPS%20document%20library/Support%20alert/CMO%20-dexa%20letter.pdf?ver=2020-06-17-092605-187 (accessed July 5, 2020).
250 Villiger PM, Adler S, Kuchen S, et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387:1921–7.
251 Stone JH, Tuckwell K, Dimonaco S, et al. Trial of Tocilizumab in Giant-Cell Arteritis. N Engl J Med. 2017;377:317–28.
252 Xu X, Han M, Li T. Effictive Treatment of Severe COVID-19 Patients with Tocilizumab. 2020. chinaXiv:202003.00026v1 (accessed May 18, 2020).
253 Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4.
254 Hung IF-N, Lung K-C, Tso EY-K, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020; published online May 8. DOI:10.1016/S0140-6736(20)31042-4.
255 Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949.
256 Mahevas M, Tran V-T, Roumier M, et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. medRxiv 2020: 2020.04.10.20060699.
257 Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients mainly with mild to moderate COVID-10: an open-label, randomized, controlled trial. medRxiv 2020: 2020.04.10.20060558.
258 Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA 2020; published online May 11. DOI:10.1001/jama.2020.8630.
259 Guastalegname M, Vallone A. Could chloroquine /hydroxychloroquine be harmful in Coronavirus Disease 2019 (COVID-19) treatment? Clin Infect Dis. 2020;58:4875.
260 Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020; published online May 22. DOI:10.1016/S0140-6736(20)31180-6.
261 Funck-Brentano C, Salem J-E. Chloroquine or hydroxychloroquine for COVID-19: why might they be hazardous? Lancet 2020; published online May 22. DOI:10.1016/S0140-6736(20)31174-0.
262 SANOFI, swissmedic. Anwendung von Hydroxychloroquin (Plaquenil, Hydroxychloroquine Zentiva) bei COVID-19 Patienten – Risiko einer QT-Zeit-Verlängerung und Arzneimittelinteraktion. 2020; published online May 27. https://www.swissmedic.ch/dam/swissmedic/de/dokumente/marktueberwachung/dhpc_hpc/dhpc hydroxychloroquin.pdf.download.pdf/20200527_DHPC_Hyroxychloroquin_DE.pdf (accessed June 6, 2020).
263 Bonow RO, Hernandez AF, Turakhia M. Hydroxychloroquine, Coronavirus Disease 2019, and QT Prolongation. JAMA Cardiol 2020; published online May 1. DOI:10.1001/jamacardio.2020.1782.
264 Chen Z, Hu J, Zhang Z, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv 2020; 2020.03.22.20040758.
265 Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020; published online March 30. DOI:10.1016/j.medmal.2020.03.006.
266 Cohen MS. Hydroxychloroquine for the Prevention of Covid-19 - Searching for Evidence. N Engl J Med 2020; NEJMe2020388.
267 Valk SJ, Piechotta V, Chai KL, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Cochrane Database Syst Rev 2020; 5: CD013600.
268 Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020;117:9490–6.
269 Liu STH, Lin H-M, Baine I. Convalescehnt plasma treatment of severe COVID-19: A matched control study. 2020; published online May 22. https://www.medrxiv.org/content/10.1101/2020.05.20.20102236v1.full.pdf.
270 Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382:e38.
271 Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020 395:1417–8.
272 Spiezia L, Boscolo A, Poletto F, et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thromb Haemost. 2020;120:998–1000.
273 Lillicrap D. Disseminated intravascular coagulation in patients with 2019-nCoV pneumonia. J Thromb Haemost. 2020;18:786–7.
274 Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75:2950–73.
275 Schweizerische Gesellschaft für Hämatologie. Suggestions for thromboprophylaxis and monitoring for in-hospital patients with COVID-19. 2020; published online April 3. https://www.sgh-ssh.ch/wp-content/uploads/Suggestions-for-thromboprophylaxis-and-monitoring.pdf (accessed June 14, 2020).
276 American Society of Hematology. COVID-19 and Coagulopathy: Frequently asked questions. 2020; published online May 18. https://www.hematology.org/%20covid-19/covid-19-and-coagulopathy (accessed June 14, 2020).
277 National Institutes of Health. Antithrombotic Therapy in Patients with COVID-19. 2020; published online May 12. https://www.covid19treatmentguidelines.nih.gov/antithrombotic-therapy/ (accessed July 5, 2020).
278 Atallah B, Mallah SI, AlMahmeed W. Anticoagulation in COVID-19. Eur Heart J Cardiovasc Pharmacother. 2020;395:1054.
279 British Thoracic Society. British Thoracic Society Guidance on Venous Thromboembolic Disease in patients with COVID-19. 2020; published online May 4. https://www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/bts-guidance-on-venous-thromboembolic-disease-in-patients-with-covid-19/ (accessed June 14, 2020).
280 Callaway E. The race for coronavirus vaccines. Nature. 2020;580:576–7.
281 World Health Organization. DRAFT landscape of COVID-19 candidate vaccines – 2 July 2020. 2020. https://www.who.int/docs/default-source/coronaviruse/novel-coronavirus-landscape-covid-19-(1).pdf?sfvrsn=ff305b2_1&download=true (accessed July 5, 2020).
282 COCONEL Group. A future vaccination campaign against COVID-19 at risk of vaccine hesitancy and politicisation. The Lancet Infectious Diseases 2020; published online May 20. DOI:10.1016/S1473-3099(20)30426-6.
283 Schaffer DeRoo S, Pudalov NJ, Fu LY. Planning for a COVID-19 Vaccination Program. JAMA 2020; published online May 18. DOI:10.1001/jama.2020.8711.
284 Tarr PE, Deml MJ, Huber BM. Measles in Switzerland – progress made, but communication challenges lie ahead. Swiss Med Wkly. 2019;149:w20105.
285 Mello MM, Silverman RD, Omer SB. Ensuring Uptake of Vaccines against SARS-CoV-2. N Engl J Med 2020; NEJMp2020926.
286 Forster C. Im Herbst droht eine Grippe- und eine zweite Corona-Welle. Jetzt will der Bund die Zahl der Grippeimpfungen verdoppeln. Neue Zürcher Zeitung. 2020; published online June 19.
287 Gostin LO, Salmon DA. The Dual Epidemics of COVID-19 and Influenza: Vaccine Acceptance, Coverage, and Mandates. JAMA 2020; published online June 11. https://jamanetwork.com/journals/jama/fullarticle/2767284 DOI:10.1001/jama.2020.10802.
288 Clift, A.K., et al., Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ. 2020;371:m3731.
289 Knight, S.R., et al., Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ. 2020;370:m3339.
290 Sperrin, M. and B. McMillan, Prediction models for covid-19 outcomes. BMJ. 2020;371:m3777.
291 Ioannidis JPA, Axfors C, Contopoulos-Ioannidis DG. Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ Res. 2020;188:109890.
292 Huizinga GP, Singer BH, and Singer K. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology. 2020;161(11).
293 Popkin BM, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):e13128.
294 Schultze A, et al. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an observational cohort study using the OpenSAFELY platform. Lancet Respir Med. 2020.
295 SGGG, Expertenbrief SGGG: Coronavirusinfektion, COVID-19, Schwangerschaft und Geburt 2020.
296 Afshar Y, et al. Clinical Presentation of Coronavirus Disease 2019 (COVID-19) in Pregnant and Recently Pregnant People. Obstet Gynecol. 2020.
297 Allotey J, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020;370:m3320.
298 Knight M, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ. 2020;369:m2107.
299 Dallan C, et al. Septic shock presentation in adolescents with COVID-19. Lancet Child Adolesc Health. 2020;4(7):e21-e23.
300 Belhadjer Z, et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation, 2020.
301 Unit, S.P.S. Swiss Paediatric Surveillance Unit (SPSU). 2020 21.10.2020; Available from: https://www.spsu.ch/en/home.
302 Del Rio C, Collins L, Malani P. Long-term Health Consequences of COVID-19. JAMA. 2020.
303 Marshall M., The lasting misery of coronavirus long-haulers. Nature. 2020;585(7825):339–41.
304 Tenforde MW, et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March–June 2020. MMWR Morb Mortal Wkly Rep. 2020;69(30):993–8.
305 Salisbury H, Helen Salisbury: When will we be well again? BMJ. 2020;369:m2490.
306 Petti S, Cowling BJ. Ecologic association between influenza and COVID-19 mortality rates in European countries. Epidemiol Infect. 2020;148:e209.
307 Comission E. How many EU citizens die from influenza? 2020 07/04/2020 25.10.2020]; Available from: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20200407-1.
309 Kinderärzte Schweiz. Coronavirus – COVID-19. 2020 09.2020 25.10.2020]; Available from: https://www.kinderaerzteschweiz.ch/Fuer-Mitglieder/Coronavirus---COVID-19.
310 Guglielmi G. Fast coronavirus tests: what they can and can’t do. Nature. 2020;585(7826):496–8.
311 Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 Test Sensitivity – A Strategy for Containment. N Engl J Med. 2020.
312 Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection - Challenges and Implications. N Engl J Med. 2020;383(6):e38.
313 Gudbjartsson DF, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med. 2020.
314 den Hartog G, et al. SARS-CoV-2-Specific Antibody Detection for Seroepidemiology: A Multiplex Analysis Approach Accounting for Accurate Seroprevalence. J Infect Dis. 2020;222(9):1452–61.
315 Tillett RL, et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis, 2020.
316 Iwasaki A. What reinfections mean for COVID-19. Lancet Infect Dis. 2020.
317 van der Made CI, et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA. 2020
318 Hadjadj J, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–24.
319 Pierce CA, et al. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med. 2020;12(564).
320 Bastard P, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515).
321 Zhang Q, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515).
322 Zietz M, Tatonetti NP. Testing the association between blood type and COVID-19 infection, intubation, and death. medRxiv, 2020.
323 Latz CA, et al. Blood type and outcomes in patients with COVID-19. Ann Hematol. 2020;99(9):2113–8.
324 Sagar M, et al. Recent endemic coronavirus infection is associated with less severe COVID-19. J Clin Invest. 2020.
325 Sommerstein R, et al. Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. Antimicrob Resist Infect Control. 2020;9(1):100.
326 Gandhi M, Rutherford GW. Facial Masking for Covid-19 – Potential for «Variolation» as We Await a Vaccine. N Engl J Med. 2020.
327 Beigel JH, et al. Remdesivir for the Treatment of Covid-19 – Final Report. N Engl J Med. 2020.
328 Pan H, et al. Repurposed antiviral drugs for COVID-19 –interim WHO SOLIDARITY trial results. medRxiv, 2020: p. 2020.10.15.20209817.
329 BAG. Koordination der Versorgung mit wichtigen Covid-19-Arzneimitteln. 2020 23.10.2020 25.10.2020]; Available from: https://www.bag.admin.ch/bag/de/home/medizin-und-forschung/heilmittel/covid19_vo_2.html.
330 Tomazini BM, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients. With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020.
331 Prescott HC, Rice TW. Corticosteroids in COVID-19 ARDS: Evidence and Hope During the Pandemic. JAMA. 2020.
332 Dequin PF, et al. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA. 2020.
333 Group, W.H.O.R.E.A.f.C.-T.W., et al., Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020.
334 Writing Committee for the, R.-C.A.P.I., et al., Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA. 2020.
335 Jeronimo CMP, et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With COVID-19 (Metcovid): A Randomised, Double-Blind, Phase IIb, Placebo-Controlled Trial. Clin Infect Dis. 2020.
336 Stone JH, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med. 2020.
337 Health, N.I.o. COVID-19 Therapeutics Prioritized for Testing in Clinical Trials. 2020 20.10.2020 25.10.2020]; Available from: https://www.nih.gov/research-training/medical-research-initiatives/activ/covid-19-therapeutics-prioritized-testing-clinical-trials#activ1.
338 Group RC, et al. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020.
339 Bloom BR, Nowak GJ, Orenstein W. “When Will We Have a Vaccine?” – Understanding Questions and Answers about Covid-19 Vaccination. N Engl J Med. 2020.
340 Schwartz JL. Evaluating and Deploying Covid-19 Vaccines – The Importance of Transparency, Scientific Integrity, and Public Trust. N Engl J Med. 2020.
341 Rubin EJ, Baden LR, Morrissey S. Audio Interview: Vaccinology and Covid-19. N Engl J Med. 2020;383(16):e109.
342 Green DA, StGeorge K. Rapid Antigen Tests for Influenza: Rationale and Significance of the FDA Reclassification. J Clin Microbiol. 2018;56(10).
343 Leuzinger K, et al. Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2 Emergence Amidst Community-Acquired Respiratory Viruses. J Infect Dis. 2020;222(8):1270–9.
344 Olsen SJ, Azziz-Baumgartner E, Budd AP, et al. Decreased Influenza Activity During the COVID-19 Pandemic — United States, Australia, Chile, and South Africa, 2020. MMWR Morb Mortal Wkly Rep 2020;69:1305–1309. DOI: http://dx.doi.org/10.15585/mmwr.mm6937a6external icon
345 Dinnes J, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev, 2020. 8: p. CD013705
346 Rhee C, et al. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis. 2020.
347 Grijalva CG, Rolfes MA, Zhu Y, et al. Transmission of SARS-COV-2 Infections in Households — Tennessee and Wisconsin, April–September 2020. MMWR Morb Mortal Wkly Rep. ePub: 30 October 2020. DOI: http://dx.doi.org/10.15585/mmwr.mm6944e1external icon
Les références les plus importantes
– Recommandations actualisées sur la thérapie COVID-19 des US National Institutes of Health: https://www.COVID19treatmentguidelines.nih.gov/whats-new/
– Recommandations actualisées sur la thérapie COVID-19 du Brigham and Women’s Hospital de Boston: https://covidprotocols.org